基于 Daycent 模型的三江源地区草地 NPP 估算及其 对气候变化的响应

朱美婷,张美玲*,贾晓楠,聂雅梅,曹瑞红,罗上学,李晓娟

(甘肃农业大学理学院,甘肃 兰州 730070)

摘要:【目的】探求1971-2020年草地NPP的时空变化特征及其与气候因子的关系。【方法】基于 Daycent模型估算三江源地区草地NPP,结合同期温度和降水数据,运用多元回归分析法进行分析。 【结果】1)三江源地区草地NPP多年的年平均值为168.10gC/m²,空间上呈现东高西低,南高北低的格 局。2)高寒草甸类年均NPP为227.44gC/m²,高寒草原类年均NPP为117.23gC/m²。3)当降水量小 于450mm时,温度与草地NPP呈正相关;当降水量大于450mm时,温度与草地NPP呈负相关。【结 论】三江源地区草地NPP呈自东南向西北递减的空间格局;不同草地类型中,高寒草甸类年均NPP大 于高寒草原类年均NPP,且高寒草原类年均NPP有显著的增加趋势;三江源地区的草地NPP与降水 量呈显著相关关系,温度对该地区的草地NPP也有影响。

关键词:Daycent模型;三江源地区;净初级生产力

中图分类号:S812.1 文献标志码:A 文章编号:1009-5500(2023)02-0013-09 DOI:10.13817/j.enki.cyycp.2023.02.002

陆地植被净初级生产力(Net Primary Productivity,NPP)是陆地植物通过光合作用固定的太阳能,表 示单位面积、单位时间内所获得的生物量的净增加 值,通常以干物质表示,是地球上生命体物质和能量 循环以及生物地球化学循环的开端,是全球碳循环的 重要环节^[1]。三江源地区地处青藏高原腹地,位于青 海省南部,是长江、黄河和澜沧江3大河流的发源地, 是我国水资源保护的关键地区^[2]。三江源地区作为青 藏高原的重要组成部分,不仅是气候变化的敏感地 区,也是生态脆弱区。其生态环境一旦遭到破坏,植 被就会发生退化和逆向演替。因此三江源地区的生 态环境状况,对我国乃至全球气候和生态环境变化都

收稿日期:2021-12-21;修回日期:2022-01-24

- 基金项目:国家自然科学基金(32260353);甘肃省重点研 发计划(21YF5WA096);科技部高端外国专家 引进计划(G2022042009L);甘肃省自然科学基 金项目(1606RJZA077,1308RJZA262)
- 作者简介:朱美婷(1998-),女,湖北黄冈人,研士研究生。 E-mail:z290531742@163.com

*通信作者。E-mail:zhangml@gsau.edu.cn

会起到至关重要的影响^[3]。

NPP估算中最广泛应用的过程模型,又称为机理模型,是在植物生理生态学的基础上,模拟植被的光合作用和呼吸作用^[4]。栗文瀚^[5]基于Century模型,分析青藏高原1960-2015年草地生产力和土壤有机碳变化及其对气候变化的响应。

Century模型是通过事件和管理的实施,如植物的 收获、放牧、灌溉、有机物或肥料的添加、火灾等作为 驱动条件来模拟多种陆地生态系统C、N、P、S等元素 和水分循环过程。该模型可以模拟土壤以有机碳为 代表的有机质和地上生产力或地上净第一性生产力 (Above Net Primary Productivity, ANPP)为代表的植 被生长带来的养分的产生、分解、转化等循环过程^[6]。 Daycent模型是基于植被土壤营养循环,在Century模 型的基础上,不断改进更新各子模块的功能而发展的 以"日"为步长的生物地球化学模型^[7]。Daycent模型 主要包括植物产量子模块、土壤水分平衡和温度子模 块、土壤有机质子模块以及痕量气体通量子模块。 Zhang等^[8]使用 Daycent模型模拟了美国本土的农田 生态系统 NPP。罗文蓉^[9]基于 Daycent模型,探讨高 寒草甸净生态系统碳交换量(Net Ecosystem Exchange, NEE)对气候变化的响应与适应过程,并模拟 未来不同气候变化情景下,高寒草甸碳收支格局及其 动态变化趋势。

国内外基于 Daycent 模型估算 草地生产力的研究 较少,因此本研究基于 Daycent 模型,估算 1970-2020 年三江源地区 草地净初级生产力的时空变化,探讨不 同草地类型的净初级生产力,并分析气候因素对草地 净初级生产力的影响。

1 材料和方法

1.1 研究区概况

三江源地区位于青海省南部,海拔2153~4726 m,地处"世界屋脊"——青藏高原的腹地。地理位置 为E89°45′~102°23′,N31°39′~36°12′,总面积约 2.50×10⁶km²。行政区包括玉树、果洛、海南、黄南4 个藏族自治州的16个县和格尔木市的唐古拉山乡(图 1)。三江源地区是以高寒草原、高寒草甸和高寒湿地 等生态类型为主^[10]。

图 1 三江源地区土壤类型(A)和草地类型(B) Fig. 1 Soil types (A) and grassland types (B) in Three-River headwaters region

1.2 数据整理

1.2.1 气象数据 本研究选取三江源地区11个气象 站点1971-2020年的历史气象数据,来源于国家气象 科学数据中心中国地面气候资料日值数据集(http:// data.cma.cn/),采用其中的3个指标:日最高温度 (℃)、日最低温度(℃)、降水量(cm),根据模型整理成 天气文件(.wth)需要的格式:日(1~31)、月(1~12)、 年份、天数(1~365)、日最高温度、日最低温度、日降 水量。

1.2.2 土壤数据 土壤质地类型数据来源于世界土 壤数据库(http://www.fao.org/),采用的土壤分类系 统为FAO-90。该数据是空间分辨率为1km的网格数 据,包含各个格网点的土壤类型、土壤理化性状等信 息。收集不同站点的土壤信息,整理Daycent模型输 入所需的土壤文件(soils.in),包括土层厚度及分层、 土壤容重、田间持水量、萎蔫点、土层蒸发系数、根系 在土层中的百分比、土壤砂砾含量、土壤黏粒含量、土 壤有机质、饱和导水率和pH值^[11]。 1.2.3 草地类型数据 数据来源于中国生态系统评估与生态安全数据库(http://www.ecosystem.csdb.cn/),使用ArcGIS 10.2对草地生态系统数据进行处理,将三江源地区草地类型进行可视化。

1.3 Daycent模型

1.3.1 模型运行 模型运行除了需要输入天气文件 (.wth)与土壤文件(soils.in),还需要站点文件(<site >.100),站点文件由站点的经纬度、月平均降水量、 降水量的标准差跟偏度以及月平均最大/最小温度创 建。站点文件(<site>.100)中的平均值可以用于计 算天气文件(.wth)中的缺失值;再通过查阅文献搜 集。三江源地区生态系统管理措施的相关信息,编制 日程文件(.sch)。上述天气文件、土壤文件、站点文件 和日程文件一并用于Daycent模型的运行。

每个站点进行模拟之前,需要进行1次4000年的 平衡模拟,使生态系统碳库积累并达到平稳状态,再 以达到平稳状态的碳库为初始条件,输入各站点的天 气文件(.wth)与土壤文件(soils.in)进行模拟,对参数 进行合理调整,得到最终的输出结果

1.3.2 NPP计算方法 在 Daycent 模型中, 日 NPP 的值为每日植物地上、地下 NPP 之和, 计算公式如下:

NPP = mcprd(1) + mcprd(2) + mcprd(3)
式中:mcprd(1)表示草地生态系统中新枝每日NPP
(gC/m²);mcprd(2)表示草地生态系统中幼根每日
NPP(gC/m²);mcprd(3)表示草地生态系统中成熟根
每日NPP(gC/m²)。

1.4 多元回归分析法

本研究通过建立温度(t)、降水量(p)与NPP之间 的多元回归模型,对建立的数学模型进行检验,在符 合 $\alpha = 0.05$ 或0.01的情况下把给定的气候因子(温 度和降水量)的数值代入回归模型,从而计算出气候因子与NPP之间的相关关系^[12]。

 $NPP = a_0 + a_1t + a_2p$

式中,*a*₀是回归常数;*a*₁是温度的回归系数,表示 温度的作用趋势;*a*₂是降水量的回归系数,表示降水量 的作用趋势。

2 结果与分析

2.1 结果验证

由于三江源区域的特殊性,导致草地NPP的实测数据获取较为困难^[12]。因此,本研究选择与具有相同研究区域的前人研究结果^[3,13-17]进行对比(表1-2)。

★I 二江源地区个问模型模拟的早地 NPP	值
-----------------------	---

Table 1	Grassland NPP	values simulated	with	different	model in	Three	-River	headwaters	region
---------	---------------	------------------	------	-----------	----------	-------	--------	------------	--------

研究区域	模型方法	研究时期/年	NPP	参考文献	本研究
三江源地区	CASA 模型	2001-2010	169.02	张颖等[13]	174.99
三江源地区	CASA模型	2004 - 2008	168.68	蔡雨恋等 ^[14]	163.42
三江源地区	CASA模型	2010	162.87	沃笑等[15]	189.99
三江源地区	Miami模型	2005-2006	211.92	王翀[3]	172.37

表2 三江源地区不同草地类型的 NPP 值

 Table 2
 NPP values among different grassland types in Three-River headwaters region

 $gC/(m^2 \cdot a)$

研究时期/年	会老士赴	草地	类型	草地类型(本研究)		
	参 乞 乂 瞅	高寒草甸类	高寒草原类	高寒草甸类	高寒草原类	
2004	周才平等[16]	214.64	63.95	208.82	116.40	
2013	蔡雨恋等[14]	188.95	129.41	214.83	107.61	

2.2 三江源地区草地 NPP 年变化

对三江源地区 11个站点的草地年均 NPP 研究结 果表明,河南站点的年均 NPP 大于 300 gC/(m²·a),玉 树、清水河、久治、兴海站点的年均 NPP 处于 200~300 gC/(m²·a),曲麻莱、达日、玛多、杂多站点的年均 NPP 处于 100~200 gC/(m²·a),五道梁和沱沱河站点的年 均 NPP 都低于 100 gC/(m²·a)。从观察站点年均 NPP 的标准偏差和变异系数可以看出,玉树跟兴海的 标准偏差较大,均大于 100 gC/(m²·a),相应的变异系 数也均大于 40%,说明两个站点的年均 NPP 波动较 大;变异系数最小的是杂多站为 8%,说明杂多的年均 NPP 波动较小, NPP 的年际变化较稳定(表3)。

1971-2020年的草地NPP呈波动增加的趋势,增

表3 三江源地区11个站点的草地年均NPP

Table 3 Annual average grassland NPP of 11 stations in Three-River headwaters region

站点	均值/ (gC•m ⁻² •a ⁻¹)	标准差/ (gC•m ⁻² •a ⁻¹)	变异系数/%
玉树	279.002	148.090	53.08
清水河	225.825	28.618	12.67
五道梁	76.159	21.482	28.21
曲麻莱	118.716	17.270	14.55
达日	159.541	16.305	10.22
久治	245.110	35.330	14.41
玛多	131.855	32.498	24.65
兴海	225.795	100.451	44.49
河南	308.080	39.048	12.67
沱沱河	95.962	24.479	25.51
杂多	147.085	12.538	8.52

加率为 0.638 gC/(m²·a), 增长趋势明显, 通过了 α = 0.05 的显著性检验。观察年均 NPP 变化曲线可知, 1980 年之前, 三江源地区的年均 NPP 在 100~150 gC/(m²·a) 波动, 草地 NPP 值较低, 与该时段年降水量、年平均温度的变化趋势一致, 与区域水热条件显著相关; 1980-1982 年, 年均 NPP 快速上升, 达到峰值, 对应年份的降水量也有显著的增加, 虽然温度低于平均水平, 但受到降水对植被生长的促进效应, 年均 NPP 仍有增加。1980 年之后, 三江源地区的年均 NPP 在 150~200 gC/(m²·a) 波动(图 2)。

Fig. 2 Annual variation trend of grassland NPP in Three-River headwaters region from 1971 to 2020

2.3 三江源地区草地 NPP 空间分布格局

利用 Daycent 模型估算出三江源地区 11 个气象站 点 1971-2020 年的草地 NPP,平均值为 168.10 g C/ (m²·a),使用 ArcGIS 10.2 克里金插值法进行年均草 地 NPP 的空间插值。从年均草地 NPP 的空间分布来 看,三江源地区东部和南部的草地 NPP 较高,西部地

根据三江源地区草地NPP与年均温(℃)和年降 水量(mm)之间的关系。三江源地区草地NPP与年降 区的年均草地NPP较低,表现出了较为明显的地带性

分布特征,从东南向西北递减(图3),其中河南蒙古族 自治县、泽库县的年均NPP较高,大于 300 gC/(m²·a);同德县、玛沁县、甘德县、兴海县、久治 县、班玛县、玉树县、称多县、囊谦县年均NPP略高,处 于200~300 gC/(m²·a);达日县、玛多县、杂多县、曲麻 莱县年均NPP略低,处于100~200 gC/(m²·a);年均 NPP最低的为治多县和唐古拉山乡,小于 100 gC/(m²·a)。

图 3 三江源地区 1971-2020 年年均 NPP 空间分布 Fig. 3 Spatial distribution of annual average NPP in Three-River headwaters region from 1971 to 2020

2.4 气候变化对三江源地区草地 NPP 的影响

1971-2020年,三江源地区有显著的变暖趋势, 温度增加率为0.0378 ℃/a,增加趋势明显,通过了 α = 0.01的显著性检验(图 4-A)。1971-2020年,三江源 地区年均降水量为448.23 mm,降水量增加率为3.87 mm/a,增加趋势明显,通过了 α =0.01的显著性检验 (图 4-B)。

的相关系数 0.2, 说明降水对三江源地区草地 NPP 的

水量的相关系数为0.77,明显高于草地NPP与年均温

变化影响较大。草地NPP主要集中在140~200 gC/ (m²·a),温度分布在0℃以下的值较多,降水主要集中

在450 mm以上,属于半湿润区。从图5中也可以看 出,草地NPP与降水量变化有显著的正比关系。

图 5 三江源地区草地 NPP 与温度(A)、降水量(B)的相关性分析 Fig. 5 Correlation analysis between grassland NPP with temperature (B) and precipitation (B) in **Three-River Headwaters region**

对三江源地区的草地 NPP 与温度和降水量进行 回归分析。结果表明,三江源地区的草地 NPP 与温 度和降水量有着显著的线性关系,通过了α=0.01的 显著性检验,说明回归结果的可靠性。从去除了量

纲的标准化回归系数 b1 和 b2 可以看出, 三江源地区 的降水量对草地 NPP 的影响高于温度,且温度对草 地 NPP 呈现出负作用,降水量对草地 NPP 有正 效益。

表4 草地NPP与温度和降水量的线性回归

		8	8	*	· X X		
	回归系数			标准回归	系数	\mathbf{D}^2	Sim
	a_0	a_1	a_2	b_1	b_2	R	51g.
三江源地区	52.346	-4.445	0.258	-0.124	0.818	0.587	0.000

 Table 4
 Linear regression between grassland NPP and temperature, precipitation

以450mm降水量为界,分析不同降水量下温度、 降水量与草地NPP之间的关系(表5)。结果表明,2 种降水量下,三江源地区的草地NPP与温度和降水量 有着显著的线性关系,通过了α=0.01的显著性检验。

其中当降水量小于450 mm时,温度和降水量对草地 NPP均具有正效应,降水量对草地NPP的影响较大; 当降水量大于450 mm时,降水量对草地NPP具有正 效应,温度对草地NPP呈现负效应。

表5 2种降水量的草地NPP与温度和降水量的线性回归

Table 5	Linear regression	between grassland NPF	and temperature	, precipitation under two	scenarios
---------	-------------------	-----------------------	-----------------	---------------------------	-----------

	回归系数			标准回归	目系数	D^2	<u>C'</u>
	a_0	a_1	a_2	b_1	b_2	K	51g.
降水量<450 mm	32.407	3. 312	0.326	0.070	0.789	0.613	0.000
降水量>450 mm	29.918	-6.218	0.298	-0.237	0.603	0.322	0.004

2.5 不同类型草地NPP与气候变化之间的关系

三江源地区草地类型分为高寒草甸类与高寒草 原类,其中高寒草甸类NPP为227.44gC/(m²·a),高 寒草原类NPP为117.23gC/(m²·a),且高寒草甸类 NPP基本上高于高寒草原类NPP。

从空间分布格局来看(图6),高寒草甸类主要分 布在三江源的中部地区和东南部地区,以及少部分西 北地区,NPP的波动为140~300 gC/(m²·a);高寒草 原类主要分布在三江源的西北部地区,以及少数北部 地区,NPP的波动为50~150 gC/(m²·a)。

图 6 两种草地类型年平均 NPP 空间分布 Fig. 6 Spatial distribution of annual average NPP of two grassland types

从变化趋势曲线来看(图7),高寒草甸类与高寒 草原类年均NPP均有增加的趋势,但高寒草甸类的增 加率为0.18 gC/(m²·a),增加的趋势并不明显,没有 通过显著性检验。最高值出现在1981年为312.11 gC/(m²·a),最低值出现在1977年,为144.68 gC/(m²·a)。且在1977~1981年,高寒草甸类NPP随 时间变化有明显的增加,与该地区年降水量增加的年 份基本吻合。该时间段高寒草甸类NPP的突增与降 水量增加有一定的关系。而高寒草原类的增加率为 03 gC/(m²·a),通过了 α=0.01 的显著性检验,可以 认为高寒草原类 NPP具有明显的波动增加趋势。

2种类型的草地 NPP 对气候变化的响应也不同, 以草地生态系统下的高寒草甸类和草原类为研究对 象,对不同类型草地 NPP 与对应区域的年均温度和年 均降水量进行多元线性回归,回归结果表明 2种草地 类型的年均 NPP 与温度和降水量均存在着显著的线 性关系(表6)。从去除了量纲的标准化回归系数 B₀和 B₁可以看出,降水量对两种草地 NPP 的影响高于温 度,说明降水量是三江源地区草地的主要气候控制因 素,且降水量的标准化回归系数均大于 0.7。高寒草 甸类中温度的标准化回归系数为负值,说明温度对高 寒草甸类 NPP 增加起负的作用。

综上所述,降水量是三江源区草地NPP的主要影 响因素,且高寒草甸类与高寒草原类NPP都与降水量 呈正相关。温度也是影响三江源地区草地NPP的因 素,但高寒草甸类与温度呈负相关,高寒草原类与温 度呈正相关。

表6 两种草地类型 NPP 与温度和降水量的线性回归

Table 6 Linear regression between NPP and temperature, precipitation for two grassland types

回归系数			标准回归	目系数	D ²		
	a_0	a_1	a_2	b_1	b_2	R^2	Sig.
高寒草甸	94.837	-12.969	0.272	-0.304	0.765	0.528	0.000
高寒草原	37.688	2.356	0.252	0.063	0.763	0.632	0.000

3 讨论

从时间分布来说,三江源地区草地NPP 50年的 平均值为168.10 gC/(m²·a),与蔡雨恋等^[13]结果比较 一致。进一步模拟发现1979-1981年该地区草地年 均NPP上升趋势较快,主要是由于1979-1981年植 物生长季时期,该地区降水和温度呈上升趋势,降水 充沛的地区草地NPP增加明显,与李传华等^[17]结论 一致。

从空间分布来说,1971-2020年三江源地区草地 NPP总体趋势呈现从东南向西北递减的趋势,与其他 研究结果一致^[3-4,12-14]。主要是由于东南部地区的海 拔相比于西北地区要低很多,温度和降水条件较好, 也是高寒草甸广泛分布的区域,因此草地NPP较大。 三江源西北部地区海拔较高,植被较为稀疏,主要为 高寒草原分布的区域,部分地区的草地NPP在100 gC/(m²·a)以下。

从不同类型草地 NPP来说,高寒草甸类 50年年 均 NPP 值为 227.44 gC/(m²·a),高天草原类 50 年年 均 NPP 值为 117.23 gC/(m²·a),高于郭晓寅等^[18]的研 究结果,郭晓寅等^[18]研究区域是以长江和黄河为源头 的江河源区域,基于 MODIS 资料对植被净初级生产 力的分析,而本研究区域是以长江、黄河和澜沧江为 源头的三江源地区,且本研究利用土壤数据、气象数 据通过 Daycent 模型进行模拟,故而研究区域尺度与 所选数据精度,都会影响估算的结果。由于气候变化 的影响,西北部地区呈暖湿化趋势,因此在西北部高 寒草原类地区,草地 NPP 有较显著、较大范围的增加。 但在东南部和中部地区,是人类密集居住区,存在较 大的放牧压力,草地退化也较为严重,草地 NPP 增加 的趋势并不显著^[19]。

由于海拔较高、气候条件相对恶劣,三江源地区 属于气候变化敏感区,生态环境十分脆弱,并且极易 遭到破坏^[13]。本研究发现,气候因子中与三江源草地 NPP相关性较高的为年均降水量,相关系数为0.769, 与国内外气候变化对草地生态系统的影响研究结果 一致^[19-22]。陈卓奇等^[23]的研究结果表明青藏高原植 被生产力受水热条件的影响,以450 mm降水量为界, 当降水量低于450 mm时,温度与草地 NPP呈正相关; 当降水量高于450 mm时,温度与草地 NPP呈负相关, 主要因为当降水量高于 450 mm时,水分较为充足,水 分不再是植物生长的限制性因素。但是,当温度升 高,植物生物量积累的同时,植物自养呼吸和异养呼 吸消耗的生物量也会增加,最终导致积累的生物量减 少。温度的高低与植物的很多生理过程有关,对生态 系统中的能量、水分和养分起到了调节和再分配的作 用^[4]。三江源地区的气候呈现暖湿化趋势,植被的返 青期提前、枯黄期推迟,有利于 NPP 的积累^[24-25]。三 江源地区草地 NPP 的年际变化曲线中,可以看出有两 次较大的波动,一次是 1979-1981年,主要由于降水 量上升较快,导致草地 NPP 迅速上升;另一次是 2007-2009年,降水量与温度都是上升的趋势,但年 均温的上升速率较快,导致草地 NPP 有较大的上升幅 度。两种草地类型年均 NPP 与温度和降水量之间存 在着显著的线性关系。

4 结论

基于青海省三江源区 11个气象站点 1971-2020 年的气象数据、土壤数据等资料,结合该地区草地类 型图,利用 Daycent 模型模拟和分析了该地区草地净 初级生产力的变化,结论如下:

(1)1971-2020年三江源地区草地NPP的年均值 为168.10gC/(m²·a),呈现从东南向西北逐渐递减的 梯度。东南地区的年均NPP基本大于200gC/(m²· a),其中青海省河南蒙古族自治县、泽库县的年均 NPP大于300gC/(m²·a),这些地区可以适度的发展 畜牧经济,以促进当地的经济发展;西北地区的年均 NPP小于200gC/(m²·a),其中治多县和唐古拉山乡 年均NPP小于100gC/(m²·a),这些地区可以考虑对 草地实施生态保护,以促进生态发展。

(2) 三江源地区草地生态系统中,高寒草甸类年 均 NPP 较大,为 227.44 gC/(m²·a),高寒草原类年均 NPP 稍小,为 117.23 gC/(m²·a)。受气候暖湿化、人 类活动的影响,高寒草原类年均 NPP 有显著的增长趋 势,高寒草甸类的增长趋势并不明显。需加强高寒地 区的草地生态保育和养护,探寻促进草地生物生长和 恢复的有效生物措施^[25]。

(3) 三江源地区的草地 NPP 与降水量呈显著相关 关系, 温度对该地区的草地 NPP 也有影响, 但没有降 水量的影响大。当降水量小于 450 mm 时, 温度与草 地 NPP 呈正相关;当降水量大于 450 mm 时,温度与草 地 NPP 呈负相关。

参考文献:

- [1] 王玉龙. 基于改进 CASA 模型的区域冬小麦产量遥感估 测研究[D]. 合肥:安徽大学,2020.
- [2] Zhai X, Yan C, Xing X, et al. Spatial-temporal changes and driving forces of aeolian desertification of grassland in the Sanjiangyuan region from 1975 to 2015 based on the analysis of Landsat images[J]. Environmental Monitoring and Assessment, 2020, 193(2):1-16
- [3] 王翀.三江源区高寒草地净初级生产力模拟研究[D]. 兰州:兰州大学,2013.
- [4] 刘鹏.2000~2012年三江源植被生产力遥感估算及其时 空格局分析[D].西宁:青海师范大学,2016.
- [5] 栗文瀚. 气候变化对中国主要草地生产力和土壤有机碳 影响的模拟研究[D]. 北京:中国农业科学院,2018.
- [6] Grossd S J D. Simulating soil organic carbon stock changes in agroecosystems using CQESTR, Daycent, and IPCC Tier 1 methods [M] //Synthesis and modeling of greenhouse gas emissions and carbon storage in agricultural and forest systems to guide mitigation and adaptation, 2016. DOI:10.2134/advagricsystmodel6.2013.0001.5.
- [7] Parton W J, Schimel D S, Cole C V, et al. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands 1[J]. Soil Science Society of America Journal, 1987, 51(5):1173-1179
- [8] Zhang Y, Gurung R, Marx E, et al. DayCent Model Predictions of NPP and Grain Yields for Agricultural Lands in the Contiguous U. S. [J]. Journal of Geophysical Research:Biogeosciences, 2020, 125(7):1-15
- [9] 罗文蓉. 气候变化对藏北高寒草甸CO₂净交换影响的模 拟与预测[D]. 北京:中国农业科学院,2020.
- [10] 张雅娴,樊江文,曹巍,等.2006~2013年三江源草地产 草量的时空动态变化及其对降水的响应[J].草业学报, 2017,26(10):10-19.
- [11] 张璇,谢立勇,郭李萍,等.Daycent模型模拟不同农作管 理措施下华北地区土壤有机碳的变化[J].应用生态学 报,2016,27(2):539-548.

- [12] 陈利军.三江源自然保护区NPP的时空变化及驱动因 子研究[D].晋中:山西农业大学,2015.
- [13] 张颖,陈怀艳,李建龙.三江源生态系统近10年净初级 生产力估测[J].天津农业科学,2014,20(10):25-28.
- [14] 蔡雨恋,郑有飞,王云龙,等.利用改进的CASA模型分 析三江源区净植被生产力[J].南京信息工程大学学报 (自然科学版),2013,5(1):34-42.
- [15] 沃笑,吴良才,张继平,等.基于CASA模型的三江源地 区植被净初级生产力遥感估算研究[J].干旱区资源与 环境,2014,28(9):45-50.
- [16] 周才平,欧阳华,王勤学,等.青藏高原主要生态系统净 初级生产力的估算[J].地理学报,2004,59(1):74-79.
- [17] 李传华,孙皓,王玉涛,等.基于机器学习估算青藏高原
 多年冻土区草地净初级生产力[J].生态学杂志,2020, 39(5):1734-1744.
- [18] 郭晓寅,何勇,沈永平,等. 基于 MODIS 资料的 2000~2004年江河源区陆地植被净初级生产力分析[J]. 冰川 冻土,2006,28(4):512-518.
- [19] 王军邦,刘纪远,邵全琴,等.基于遥感-过程耦合模型的1988~2004年青海三江源区净初级生产力模拟[J].
 植物生态学报,2009,33(2):254-269.
- [20] 周伟.中国草地生态系统生产力时空动态及其影响因素 分析[D].南京:南京大学,2014.
- [21] Silvertown J, Dodd M E., McConway K, et al. Rainfall, Biomass Variation, and Community Composition in the Park Grass Experiment [J]. Ecology, 1994, 75 (8) : 2430-2437.
- [22] 许振柱,周广胜,王玉辉.草原生态系统对气候变化和 CO₂浓度升高的响应[J].应用气象学报,2005,16(3): 385-395.
- [23] 陈卓奇,邵全琴,刘纪远,等.基于MODIS的青藏高原 植被净初级生产力研究[J].中国科学:地球科学,2012, 42(3):402-410.
- [24] 刘凤,曾永年.近16年青海高原植被NPP时空格局变化及气候与人为因素的影响[J].生态学报,2019,39(5): 1528-1540.
- [25] 满文婧,徐元进。基于NPP与EVI的三江源生态状况 评估[J]. 草原与草坪,2021,41(5):1-8.

Estimation of grassland net primary productivity in Three–River Headwaters region based on Daycent model and its response to climate change

ZHU Mei-ting, ZHANG Mei-ling*, JIA Xiao-nan, NIE Ya-mei, CAO Rui-hong,

LUO Shang-xue, Li Xiao-juan

(College of Science, Gansu Agricultural University, Lanzhou 730070, China)

Abstract: [Objective] This research was to explore the spatial-temporal variation of grassland net primary productivity (NPP) and its relationship with climate factors during $1971\sim2020$. [Method] Based on the Daycent model, the grassland NPP in the Three-River Headwaters region was estimated, and multiple regression analysis was used in conjunction with temperature and precipitation data in the same period of time. [Result] 1) The average annual NPP in Three-River headwaters region was $168.10 \text{ gC}/(\text{m}^2 \cdot \text{a})$, and presented a pattern with higher in the east and south, but lower in the west and north. 2) The average annual NPP of alpine meadow was $227.44 \text{ gC}/(\text{m}^2 \cdot \text{a})$, and the average annual NPP of alpine grassland was $117.23 \text{ gC}/(\text{m}^2 \cdot \text{a})$. 3) When precipitation was less than 450mm, the grassland NPP was positively correlated with temperature. When precipitation was greater than 450 mm, the NPP of grassland was negatively correlated with temperature. [Conclusion] The grassland NPP in the Threeriver Headwaters region showed a spatial pattern of decreasing from southeast to northwest; Among different grassland types, the average annual NPP of alpine meadow was higher than that of alpine grassland, and the average annual NPP of alpine grassland had a significant increasing trend; There was a significant correlation between grassland NPP and precipitation in the Three-River headwaters region. Temperature also influenced grassland NPP in this region.

Key words: daycent model; Three-River Headwaters region; net primary productivity