基于Markov-PLUS和InVEST模型的锡林郭勒草原碳储量变化预测
CSTR:
作者:
作者简介:

刘涛(1997-),女,广东梅州人,硕士研究生。E-mail:taojlr@outlook.com

中图分类号:

S812.29

基金项目:

国家重点研发计划项目(2016YFB0501502);内蒙古自治区人才开发基金(PZ2021000658 );内蒙古自治区科技计划项目(2019GG138);内蒙古自治区自然科学基金面上项目(2021LHMS04002)


Prediction of carbon storage change in Xilingol grassland based on Markov-PLUS and inVEST models
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究锡林郭勒草原土地利用对碳储量的影响,了解草原生态系统固碳能力的变化趋势。【方法】基于 1995-2015 年土地利用变化规律,结合场景分析法和 Markov‐PLUS 复合模型,模拟锡林郭勒草原历史趋势、经济发展和生态保护 3 个场景下 2035 年的土地利用空间分布,并利用 InVEST 模型预测相应的碳储量,分析土地利用变化对碳储量的影响。【结果】(1)1995-2015 年,锡林郭勒草原林地和城乡工矿居民用地面积持续增加,草地面积减少,但草地仍是占比最大的土地利用类型,20 年间区域碳储量增加了 18 228. 93×103 t;(2)预测到 2035 年,历史趋势和经济发展场景下,用地面积增加的主要为草地和城乡工矿居民用地,生态保护场景下为林地和草地,3 种场景下碳储量增量分别为 4 419. 74×103 、1 1207. 75×103 和 18 498. 45×103 t。【结论】 Markov‐PLUS 和 InVEST 模型预测锡林郭勒草原未来土地利用和碳储量变化获得的结果可靠;预测结果表明,1995-2035 年锡林郭勒碳储量呈增加趋势,生态保护场景下碳储量增幅显著高于其他场景;林地、草地与其他地类之间的转变是导致碳储量变化的主要原因。本研究可以为该区域未来的土地利用结构的调整和管理提供参考。

    Abstract:

    【Objective】 In order to explore the impact of land use changes on carbon storage, so as to understand the change trend of carbon sequestration capacity of grassland ecosystems.【Method】 Based on the land use data from 1995 to 2015, combined the scenario analysis method and the Markov ‐PLUS compound model, the study simulate the spatial distribution of land use in 2035 of Xilingol grassland under historical trend (HT), economic development (ED) and ecological protection (EP) scenarios. The carbon storage estimation result based on InVEST model was used to analyzed the impact of land use changes on carbon storage.【Result】1) From 1995 to 2015, the areas of for‐ est and construction land,Xilingol grassland, continued to increase, and grassland area decreased which accounted for the largest percentage land use type. During this period, the carbon storage increased by 18 228. 93×103 t;2) By 2035, the area would increase mainly in grassland and construction land under HT and ED scenarios, and would in‐ crease mainly in forest land and grassland under EP scenario. The carbon storage increments under three scenarios were predicted to be 4 419. 74×103 t,11 207. 75×103 t and 18 498. 45×103 t, respectively.【Conclusion】 Markov‐ PLUS and InVEST models could obtain reliable results in predicting future land use and carbon storage in Xilingol grassland. The simulation results showed that the carbon storage of Xilingol grassland would be in an upward trend from 1995 to 2035. The increase of carbon storage under ecological protection scenario was significantly higher than other scenarios. The transition between forest‐grassland and other land uses would be the main reason of the change in carbon storage. This study provides reference for the adjustment and management of the future land use structure in this region.

    参考文献
    [1] 李若玮,叶冲冲,王毅,等.基于InVEST模型的青藏高原碳储量估算及其驱动力分析[J].草地学报,2021,29(S1):43-51.
    [2] Ma A,He N,Yu G,et al.Carbon storage in Chinese grass‐land ecosystems:Influence of different integrative methods[J].Scientific reports,2016,6(1):1-10.
    [3] Gaillard M J,Morrison K D,Madella M,et al.Past landuse and land-cover change:The challenge of quantifica‐tion at the subcontinental to global scales [J].Past GlobalChanges Magazine,2018,26(1):3.
    [4] Zhu G,Qiu D,Zhang Z,et al.Land-use changes lead to adecrease in carbon storage in arid region,China [J].Eco‐logical Indicators,2021,127:107770.
    [5] 白永飞,陈世苹.中国草地生态系统固碳现状、速率和潜力研究[J].植物生态学报,2018,42(3):261-264
    [6] 张文华,贾志斌,卓义,等.InVEST 模型对锡林郭勒草原碳储量研究的适用性分析[J].地球环境学报,2016,7(1):87-96.
    [7] Lyu X,Li X,Dou H,et al.Evaluation of grassland carbonpool based on TECO-R model and climate-driving func‐tion:A case study in the Xilingol typical steppe region ofInner Mongolia,China[J].Ecological Indicators,2020,117:106508.
    [8] Quesada B,Arneth A,Robertson E,et al.Potential strongcontribution of future anthropogenic land-use and landcover change to the terrestrial carbon cycle [J].Environ‐mental Research Letters,2018,13(6):064023.
    [9] Prestele R,Alexander P,Rounsevell M D A,et al.Hot‐spots of uncertainty in land‐use and land‐cover change pro‐ jections:a global ‐ scale model comparison[J].Globalchange biology,2016,22(12):3967-3983.
    [10] Liang Y,Liu L,Huang J.Integrating the SD ‐CLUE ‐ Sand InVEST models into assessment of oasis carbon stor‐age in northwestern China [J].Plo Sone,2017,12(2):e0172494.
    [11] Posner S,Verutes G,Koh I,et al.Global use of ecosys‐tem service models [J].Ecosystem Services,2016,17:131-141.
    [12] Li L,Song Y,Wei X,et al.Exploring the impacts of ur‐ban growth on carbon storage under integrated spatialregulation:A case study of Wuhan,China [J].EcologicalIndicators,2020,111:106064.
    [13] Zhu W,Zhang J,Cui Y,et al.Ecosystem carbon storageunder different scenarios of land use change in Qihe catch‐ment,China [J].Journal of Geographical Sciences,2020,30(9):1507-1522.
    [14] He C,Zhang D,Huang Q,et al.Assessing the potentialimpacts of urban expansion on regional carbon storage bylinking the LUSD ‐urban and InVEST models [J].Envi‐ronmental Modelling & Software,2016,75(1):44-58.
    [15] Basse R M,Omrani H,Charif O,et al.Land use changesmodelling using advanced methods:Cellular automataand artificial neural networks.The spatial and explicit rep‐resentation of land cover dynamics at the cross-borderregion scale [J].Applied Geography,2014,53:160-171.
    [16] Shi M,Wu H,Fan X,et al.Trade‐Offs and Synergies ofMultiple Ecosystem Services for Different Land Use Sce‐narios in the Yili River Valley,China [J].Sustainability,2021,13(3):1577.
    [17] Fu Q,Hou Y,Wang B,et al.Scenario analysis of ecosys‐tem service changes and interactions in a mountainoasis-desert system:a case study in Altay Prefecture,China [J].Scientific reports,2018,8(1):1-13.
    [18] Sohl T L,Claggett P R.Clarity versus complexity:Land-use modeling as a practical tool for decisionmakers [J].Journal of Environmental Management,2013,129:235-243.
    [19] Yang J,Gong J,Tang W,et al.Patch-based cellular au‐tomata model of urban growth simulation:Integratingfeedback between quantitative composition and spatialconfiguration [J].Computers,Environment and UrbanSystems,2020,79:101402.
    [20] Liang X,Guan Q,Clarke K C,et al.Understanding thedrivers of sustainable land expansion using a patchgenerating land use simulation(PLUS)model:A casestudy in Wuhan,China [J].Computers,Environment andUrban Systems,2021,85:101569.
    [21] Chi D,Wang H,Li X,et al.Assessing the effects of graz‐ing on variations of vegetation NPP in the Xilingol Grass‐land,China,using a grazing pressure index [J].Ecologi‐cal Indicators,2018,88:372-383.
    [22] 吴恒飞,陈克龙,张乐乐,等.增温对青海湖流域高寒草甸主要温室气体通量的影响[J].草原与草坪,2021,41(4):1-9.
    [23] 徐新良,刘纪远,张树文,等.中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[EB/OL].中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI),2018.DOI:10.12078/2018070201.
    [24] 刘纪远,匡文慧,张增祥,等.20 世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14.
    [25] 侯西勇,徐新良.21 世纪初中国海岸带土地利用空间格局特征[J].地理研究,2011,30(8):1370-1379.
    [26] 张增祥,汪潇,温庆可,等.土地资源遥感应用研究进展[J].遥感学报,2016,20(5):1243-1258.
    [27] 徐新良.中国人口空间分布公里网格数据集[EB/OL].中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI),2017.DOI:10.12078/201712 1101.
    [28] 徐新良.中国GDP空间分布公里网格数据集[EB/OL].中国科学院资源环境科学数据中心数据注册与出版系统(http://www.resdc.cn/DOI),2017.DOI:10.12078/2017121102.
    [29] 郭斌,张莉,文雯,等.基于 CA‐Markov 模型的黄土高原南部地区土地利用动态模拟[J].干旱区资源与环境,2014,28(12):14-18.
    [30] 陈飞,高佩玲,郎新珠,等.基于GIS和 Markov 模型的土地利用时空变化研究[J].干旱区资源与环境,2012,26(8):74-78.
    [31] 孔君洽,杜泽玉,杨荣,等.黑河中游土地利用/覆被变化及其对碳储量影响的预测[J].中国沙漠,2019,39(3):87-97.
    [32] 吴佩君,刘小平,黎夏,等.基于InVEST模型和元胞自动机的城市扩张对陆地生态系统碳储量影响评估—以广东省为例[J].地理与地理信息科学,2016,32(5):22-28+36.
    [33] Wang H,Hu Y,Liang Y.Simulation and spatiotemporalevolution analysis of biocapacity in Xilingol based onCA-Markov land simulation[J].Environmental andSustainability Indicators,2021,11:100136.
    [34] 蒋欣阳.锡林郭勒盟草原景观的时空动态和景观服务的权衡分析[D].呼和浩特:内蒙古大学,2017
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘涛,刘晓龙,郭利彪,高书鹏,屈冉.基于Markov-PLUS和InVEST模型的锡林郭勒草原碳储量变化预测[J].草原与草坪,2023,(2):1-12

复制
分享
文章指标
  • 点击次数:871
  • 下载次数: 578
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2021-11-29
  • 最后修改日期:2022-04-20
  • 在线发布日期: 2023-06-28
文章二维码